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Abstract

A new SUPG-stabilized formulation for Lagrangian hydrodynamics of materials sat-
isfying Mie-Grüneisen equation of state. It allows the use of simplex-type (triangu-
lar/tetrahedral) meshes as well as the more commonly used brick-type (quadrilat-
eral/hexahedral) meshes. The proposed method yields a globally conservative formu-
lation, in which equal-order interpolation (P1 or Q1 isoparametric finite elements)
is applied to velocities, displacements, and pressure. As a direct consequence, and
in contrast to traditional cell-centered multidimensional hydrocode implementations,
the proposed formulation allows a natural representation of the pressure gradient on
element interiors. The SUPG stabilization involves additional design requirements,
specific to the Lagrangian formulation. A discontinuity capturing operator in the
form of a Noh-type viscosity with artificial heat flux is used to preserve stability and
smoothness of the solution in shock regions. A set of challenging shock hydrodynam-
ics benchmark tests for the Euler equations of gasdynamics in one and two space
dimensions is presented. In the two-dimensional case, computations performed on
quadrilateral and triangular grids are analyzed and compared. These results indicate
that the new formulation is a promising technology for hydrocode applications.
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Chapter 1

Introduction

Since their inception during the Manhattan Project at Los Alamos, algorithms for
Lagrangian shock hydrodynamics computations (hydrocodes in short) have found
widespread application to the transient analysis of a broad class of problems, from
structural and fluid mechanics, to high energy density physics and astrophysics.

The original numerical formulation used in hydrocodes has been substantially
preserved over time. In general, all kinematic variables (displacements, velocities,
and accelerations) are node-centered, thermodynamic variables are cell-centered, and
the computational meshes used are almost universally brick-type (quadrilaterals in
two dimensions and hexahedra in three dimensions).

The main differences between the various hydrocode formulations mostly reside
in the definition of the artificial viscosity operator used to capture shocks, the numer-
ical representation of gradient operators for the thermodynamic quantities, and the
methodology adopted to control hourglass instabilities.

Despite a number of attempts in the past, there are still no reliable and efficient
formulations for simplex-type meshes (triangular in two dimensions and tetrahedral
in three dimensions). The reason lies in the artificial stiffness that affects finite
element formulations for which thermodynamic variables (specifically the pressure)
are discretized as piecewise constants. This drawback is particularly evident in the
incompressible limit (occurring, for example, for plastic flow), for which the well
known locking phenomenon can occur (see, e.g., Hughes [18]).

Another problematic issue affecting current hydrocode technology (see Chris-
ton [10] for an extensive discussion) is the reconstruction of the gradients of ther-
modynamic variables – represented, by piecewise constant functions. Numerical so-
lutions are extremely sensitive to the type of reconstruction used. In the context of
mimetic finite-difference schemes, the work of Caramana et al. [9] and Campbell and
Shashkov [8] carefully discusses how to improve discretizations.
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The proposed new method bypasses completely the issue of pressure gradient
representation, which is considered by the authors a key aspect for improving on
the current state-of-the-art. The simple idea adopted herein is to derive a glob-
ally conservative formulation, in which pressure and kinematic variables are repre-
sented by means of globally-continuous, piecewise-linear shape functions (with corre-
sponding nodal degrees-of-freedom) and to stabilize this formulation by means of the
SUPG/multiscale framework of Hughes and coworkers [6, 25, 22, 44, 23, 24]. Conveg-
ence analysis of the method in the context of advection-diffusion systems of equations
is given in [28, 21, 20, 29, 30, 46].

From the point of view of gradient representation, the advantage of the new ap-
proach is clear, since on element interiors all first derivatives are well-defined without
the need to resort to special reconstruction techniques. This aspect is particularly
evident in the numerical results on brick-type meshes, which do not show most of the
usual pathologies common to standard hydrocode simulations.

It the case of two space dimensions, little difference is observed between the results
of simulations performed on quadrilateral and triangular meshes. This fact is of
particular importance, since, to the best of our knowledge, there are no examples
of accurate and robust algorithms for Lagrangian hydrodynamics on simplex-type
computational grids. In particular, the results on triangular meshes in two dimensions
show the absence of element artificial stiffness, while the simulations on quadrilateral
meshes proved free from hourglassing.

In summary, the absence of either hourglassing or locking, and the quality of the
results, usually equal, and in some instances superior, to state-of-the-art algorithms
currently documented in the literature, suggest a significant potential for complex-
geometry, multi-physics applications.

The rest of the exposition is organized as follows: the basic equations of La-
grangian hydrodynamics are introduced in chapter 2. The variational formulation for
Lagrangian hydrodynamics applications is established in chapter 3, while chapter 4
is devoted to the design of the stabilization terms. The artificial viscosity adopted is
described in chapter 5. Section 6 discusses the global conservation properties embed-
ded in the variational formulation, and chapter 7 summarizes the predictor/multi-
corrector time-integration strategy. Section 8 contains a general discussion about
the time step CFL constraints for the method, as well as pre- and post-processing
issues. Results of the numerical tests are analyzed in chapter 9 and chapter 10 for
one and two space dimensions, respectively. Conclusions and future research perspec-
tives are summarized in chapter 11. Readers not familiar with the concept of SUPG
stabilization are invited to read Appendix A before the main body of the paper, to
understand the foundations of stabilized methods in the simple context of a linear
advection-diffusion problem in one dimension.
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Chapter 2

Equations of Lagrangian
Hydrodynamics

We begin by defining the deformation ϕ as the transformation from a reference con-
figuration X (the initial configuration, corresponding to the material reference frame)
to the current configuration:

ϕ : V (open) ⊂ R
nd → R

nd (2.1)

X 7→ x = ϕ(X, t), ∀X ∈ V, t ≥ 0, (2.2)

where nd is the number of spatial dimensions. The boundary of V is denoted by S. The
deformation gradient is defined as F = Grad ϕ, that is, FiA = ∂xi/∂XA, i, A ∈
{1, . . . , nd}, and J = detF is the Jacobian determinant of the transformation. (The
summation convention for repeated indices is used throughout.) The equations of
Lagrangian hydrodynamics, consisting of mass, momentum and energy balances can
be formulated with respect to the reference configuration as follows:

u̇ = v (2.3)

ρ J = ρ0(X) (2.4)

ρ0 v̇ = ρ0 g + DivP (2.5)

ρ0 Ė = ρ0 g · v + ρ0 r + Div(P T v + Q) (2.6)

Here, u = x−X is the displacement vector, ρ0 is the reference (initial) density, ρ is the
current density, v is the velocity, g is the body force, P = JσF−T = σ cofF is the
first Piola stress tensor (σ is the Cauchy stress tensor in the current configuration),
E = e + v · v/2 is the total energy, the sum of the internal energy e and the kinetic
energy v ·v/2, r is the energy source term, and Q = JF−1q = (cofF )T q is the Piola-
transformed heat flux. E, e, g, r are measured per unit mass. The reader interested
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in the derivations of the Lagrangian equations in the reference configuration may refer
to [41], [2], or [38] for detailed derivations.

For the sake of simplicity, in the discussion that follows, body forces, heat transfer,
and internal sources of energy are assumed absent. Also, the so-called Piola identity

Div cofF ≡ 0 (2.7)

will be extensively used in the subsequent derivations.

2.1 Mie-Grüneisen constitutive laws

The following analysis is specific to materials satisfying the Mie-Grüneisen equations
of state, including ideal gases, co-volume gases, high explosives, and elastic-plastic
solids with no strength (a situation that can be achieved when bulk stresses in the ma-
terial are larger than shear stresses by orders of magnitude). No deformation strength
is involved, so that the stress tensor σ reduces to an isotropic tensor, dependent only
on the thermodynamic pressure:

σ = −pInd×nd
(2.8)

or, in index notation,
σij = −p δij (2.9)

with δij, the Kronecker tensor. Mie-Grüneisen materials satisfy an equation of state
of the form p = f1(ρ; ρr, er) + f2(ρ; ρr, er)e, where ρr and er are fixed reference ther-
modynamic states. More succinctly,

p = f1(ρ) + f2(ρ) e (2.10)

If f1 = 0 and f2 = (γ−1) ρ, the equation of state for an ideal gas, p = (γ−1) ρ e, is
recovered. It will prove very useful, for the derivations in the next sections, to recast
(2.10) as follows

e = g1(ρ) + g2(ρ) p (2.11)

where g1 = −f1/f2 and g2 = 1/f2. In addition

g′
1 =

dg1

dρ
= −f ′

1f2 − f1f
′
2

f 2
2

= −f ′
1

f2
+

f1f
′
2

f 2
2

(2.12)

g′
2 =

dg2

dρ
= − f ′

2

f 2
2

(2.13)

For ideal gases, it can be easily shown that g1 = 0, g2 = 1/((γ − 1)ρ), g′
1 = 0, and

g′
2 = −1/((γ − 1)ρ2). The numerical examples will be focused on ideal gases, but

it is important to realize that the framework developed includes a broader class of
materials.
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2.2 The one-dimensional hydrodynamics equations

In the one dimensional case, X is a scalar, so that:

X ≡ X1 = X (2.14)

x ≡ x1 = x = ϕ(X, t) (2.15)

u ≡ x − X = ϕ(X, t) − X = u (2.16)

F ≡ F =
∂ϕ

∂X
= 1 +

∂u

∂X
(2.17)

J ≡ det(F ) =
∂ϕ

∂X
≡ F (2.18)

In particular, (2.18) leads to the following simplification for the Piola stress tensor:

P = JσF−T = JσJ−1 = −p (2.19)

The complete set of one-dimensional equations is given by

u̇ = v (2.20)

ρ0 v̇ = − ∂p

∂X
(2.21)

ρ0 Ė = − ∂

∂X
(vp) (2.22)

ρ J = ρ0 (2.23)

2.2.1 Conservative form

Equations (2.20-2.22) can be cast into conservative form:

U̇ + G1,1 + Z = 0 (2.24)

where G1,1 =
∂G1

∂X1
. In particular,

U =




u
ρ0v
ρ0E


 G1 =




0
p
pv


 Z =




−v
0
0


 (2.25)

2.2.2 Quasi-linear form

In order to develop the SUPG stabilization operator it is essential to rearrange equa-
tions (2.20-2.22) in quasi-linear form, as follows:

A0Ẏ + A1Y ,1 + CY = 0 (2.26)
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where

A0 =
∂U

∂Y
, A1 =

∂G1

∂Y
, C =

∂Z

∂Y
(2.27)

are the Jacobian matrices for the temporal and spatial fluxes, respectively. We still
have to specify Y . It becomes clear that if continuous piecewise-linear functions for
the kinematic and at least one of the thermodynamic variables are to be used, then the
pressure is the natural candidate in the definition of Y . In fact, alternative options,
such as conservation variables, create the problem of taking derivatives of J with
respect to X when computing the matrix A1. The derivative of J with respect to X
involves second derivatives of the displacements u, represented by Dirac distributions
over element edges if piecewise linear interpolation is used, with possible adverse
consequences in the design of the SUPG stabilization operator. Therefore,

Y =




u
v
p


 (2.28)

The following algebraic manipulations apply to Ė:
ρ0Ė = ρ0(ė + vv̇)

= ρ0 ( (g′
1 + g′

2 p)ρ̇ + g2ṗ ) + ρ0vv̇ ( using (2.11)–(2.13) )

= −(g′
1 + g′

2 p)
ρ2

0

J2
J̇ + ρ0 g2ṗ + ρ0vv̇ ( using (2.4) )

= ρ0 g2ṗ − (g′
1 + g′

2 p)
ρ2

0

J2

∂v

∂X
+ ρ0vv̇ (2.29)

where we have used the fact that J̇ = ∂u̇
∂X

= ∂v
∂X

. Notice also that the term involv-
ing ∂v

∂X
does not contain a temporal derivative, and is therefore incorporated in the

definition of the Jacobian A1. This final manipulation yields:

A0 =




1 0 0
0 ρ0 0
0 0 ρ0 g2

(
ρ0

J

)


 , A1 =




0 0 0
0 0 1
0 Ψ

(
ρ0

J
, p
)

0


 , C =




0 −1 0
0 0 0
0 0 0


 (2.30)

where, using (2.4),

Ψ
(ρ0

J
, p
)

= p −
(ρ0

J

)2 (
g′
1

(ρ0

J

)
+ g′

2

(ρ0

J

)
p
)

(2.31)

In the case of an ideal gas,

ρ0Ė =
J

γ − 1
ṗ +

p

γ − 1

∂v

∂X
+ ρ0vv̇ (2.32)

so that

A0 =




1 0 0
0 ρ0 0
0 0 J

γ−1


 , A1 =




0 0 0
0 0 1
0 γ

γ−1
p 0


 , C =




0 −1 0
0 0 0
0 0 0


 (2.33)
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Remark 1 Notice that the Jacobians A0 and A1 have been obtained using a crucial
simplification: The term given by the inner product of the momentum equation times
the velocity, the so-called kinetic energy equation, has been removed from the total
energy equation. This amounts to writing a quasilinear equation for the internal
energy rather than the total energy. With this choice, when the quasi-linear form
of the Lagrangian hydrodynamics equations is used in the stabilization, the resulting
SUPG term is invariant under Galilean transformations. Failure to respect Galilean
invariance resulted in numerical instabilities for early tests, as further discussed in
[40].

2.3 The two-dimensional hydrodynamics equations

In the two-dimensional case, the manipulations are slightly more involved. The fol-
lowing notation is adopted:

X ≡
[

X1

X2

]
(2.34)

x ≡
[

x1

x2

]
=

[
ϕ1(X1, X2, t)
ϕ2(X1, X2, t)

]
(2.35)

u ≡ x − X =

[
ϕ1(X1, X2, t)
ϕ2(X1, X2, t)

]
−
[

X1

X2

]
=

[
u1

u2

]
(2.36)

F ≡ ∂ϕ

∂X
= I2×2 +

∂u

∂X
=

[
1 + u1,1 u1,2

u2,1 1 + u2,2

]
(2.37)

J ≡ det(F ) = (1 + u1,1)(1 + u2,2) − u2,1u1,2 (2.38)

where ui,A = ∂ui/∂XA. In particular, (2.8) and (2.37) lead to the following expression
for the Piola stress tensor:

P = JσF−T = −p

[
1 + u2,2 −u2,1

−u1,2 1 + u1,1

]
(2.39)

2.3.1 Conservative form

The two-dimensional conservative form reads:

U̇(Y ) + Gi,i(Y ) + Z(Y ) = 0 (2.40)
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where Gi,A = ∂Gi/∂XA, i, A = 1, . . . , nd = 2, are the derivatives of the spatial fluxes
Gi(Y ). Namely:

Y =




u1

u2

v1

v2

p




, U =




u1

u2

ρ0v1

ρ0v2

ρ0E




, Z =




−v1

−v2

0
0
0




(2.41)

G1 =




0
0

p(1 + u2,2)
−pu1,2

pv1(1 + u2,2) − pv2u1,2




G2 =




0
0

−pu2,1

p(1 + u1,1)
−pv1u2,1 + pv2(1 + u1,1)




(2.42)

2.3.2 Quasi-linear form

In order to design the SUPG stabilization, equations (2.40) need to be cast in quasi-
linear form:

A0Ẏ + A1Y ,1 + A2Y ,2 + CY = 0 (2.43)

where

A0 =
∂U

∂Y
, A1 =

∂G1

∂Y
, A2 =

∂G2

∂Y
, C =

∂Z

∂Y
(2.44)

are the Jacobian matrices. Note that Z is a linear function of Y . Therefore, Z(Y ) =
CY , where C is a constant matrix, justifying (2.43). The following definition of Y

is used:

Y = [u1 u2 v1 v2 p]T (2.45)

This choice prompts the following manipulations in the energy equation:

ρ0Ė = ρ0(ė + v1v̇1 + v2v̇2)

= ρ0 ( (g′
1 + g′

2 p)ρ̇ + g2ṗ ) + ρ0v1v̇1 + ρ0v2v̇2

= ρ0 g2 ṗ − (g′
1 + g′

2 p)
ρ2

0

J2
J̇ + ρ0v1v̇1 + ρ0v2v̇2 (2.46)

with

J̇ =
∂

∂t

∣∣∣∣
X

((1 + u1,1)(1 + u2,2) − u2,1u1,2)

= (1 + u2,2)v1,1 − u1,2v2,1 (term contributing to A1)

−u2,1v1,2 + (1 + u1,1)v2,2 (term contributing to A2) (2.47)
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It is important now to notice a very important cancellation in the second-derivative
terms relative to the momentum and energy equations in (2.43), due to (2.7). In fact,
we can clearly see that:

G1,1 + G2,2 =




0
0

p,1(1 + u2,2) + pu2,21 − p,2u2,1 − pu2,12

−p,1u1,2 − pu1,21 + p,2(1 + u1,1) + pu1,12

(G1,1 + G2,2)5




=




0
0

p,1(1 + u2,2) − p,2u2,1

−p,1u1,2 + p,2(1 + u1,1)
(G1,1 + G2,2)5




(2.48)

due to commutativity of second mixed derivatives, and

(G1,1 + G2,2)5 = p,1v1(1 + u2,2) + pv1,1(1 + u2,2) + pv1u2,21

−p,1v2u1,2 − pv2,1u1,2 − pv2u1,21

−p,2v1u2,1 − pv1,2u2,1 − pv1u2,12

+p,2v2(1 + u1,1) + pv2,2(1 + u1,1) + pv2u1,12

= (v1(1 + u2,2) − v2u1,2)p,1

+(−v1u2,1 + v2(1 + u1,1))p,2

+(1 + u2,2)pv1,1 − u1,2pv2,1

−u2,1pv1,2 + (1 + u1,1)pv2,2 (2.49)

Arrangement of the terms according to the structure of (2.43), yields:

A0 =




1 0 0 0 0
0 1 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
0 0 0 0 ρ0g2

(
ρ0

J
, p
)




, C =




0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(2.50)

A1 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 1 + u2,2

0 0 0 0 −u1,2

0 0 (1 + u2,2)Ψ
(

ρ0

J
, p
)

− u1,2Ψ
(

ρ0

J
, p
)

0




(2.51)

A2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 −u2,1

0 0 0 0 1 + u1,1

0 0 −u2,1Ψ
(

ρ0

J
, p
)

(1 + u1,1)Ψ
(

ρ0

J
, p
)

0




(2.52)
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For an ideal gas, Ψ
(

ρ0

J
, p
)

= γ
γ−1

p, so that:

A0 =




1 0 0 0 0
0 1 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
0 0 0 0 J

γ−1




(2.53)

A1 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 1 + u2,2

0 0 0 0 −u1,2

0 0 γ
γ−1

p (1 + u2,2) − γ
γ−1

p u1,2 0




(2.54)

A2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 −u2,1

0 0 0 0 1 + u1,1

0 0 − γ
γ−1

p u2,1
γ

γ−1
p (1 + u1,1) 0




(2.55)

The generalization to the three-dimensional case is straightforward and not reported
here for the sake of brevity.

Remark 2 Analogous to the one-dimensional case, in order to generate a stabiliza-
tion term invariant under Galilean transformations, A0, A1, and A2 have been ob-
tained by removing the kinetic energy equation from the total energy equation.
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Chapter 3

Time integration and variational
equations

The basis of the proposed method is a space-time variational formulation, to which the
SUPG stabilization is intimately connected. We adopt a Petrov-Galerkin formulation
in both space and time, resulting in a second-order accurate method in space and
time. This time-integration strategy simplifies to a standard mid-point rule when a
single-point quadrature rule in time is applied. For obvious performance reasons, all
numerical tests presented herein were performed using this variant.

The time-integration scheme dates back to Hulme [26], Jamet [27], and Aziz
and Monk [1]. More recently, Estep and French [12], French [13, 14], French and
Jensen [15], and French and Paterson [16] present an extensive survey of previous
work in the context of parabolic/second-order hyperbolic problems, and novel devel-
opments in the context of global error analysis, and adaptive time-step control.

3.1 A second-order Petrov-Galerkin time integra-

tor

In order to clarify the nature of the numerical discretization, the basic time-integration
algorithm is described for the case of an ordinary differential equation. Let us consider
the initial-value problem:

ẏ = f(y(t)) (3.1)

y(0) = y0 (3.2)

The general space-time Galerkin formulation for (3.1)–(3.2) over the interval [tn, tn+1]
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t 

+ 

− 

Figure 3.1. Second-order algorithm: Sketch of the typical
solution (blue) and test function (red).

is given by:

0 = w(t−n+1)y(t−n+1) − w(t+n )y(t−n )

−
∫ tn+1

tn

( w,s(s)y(s) + w(s)f(y(s)) ) ds (3.3)

Here t±j = limε→0±(tj+ε). Notice that, using integration by parts, the Euler-Lagrange
equations for (3.3) over the time interval [tn, tn+1] correspond exactly to (3.1) with
(3.2) imposed weakly. Starting from the variational statement (3.3), a specific nu-
merical scheme is defined by the function spaces representing the solution y and
the test function w. A second-order accurate integrator is obtained by way of a
Petrov-Galerkin formulation in time, for which the test space is given by discontin-
uous, piecewise-constant functions, and the trial space is represented by continuous,
piecewise-linear functions, as shown in Figure 3.1. Then (3.3) reduces to:

wh(t−n+1)y
h(tn+1) − wh(t+n )yh(tn) −

∫ tn+1

tn

wh(s)f(yh(s)) ds = 0 (3.4)

where wh and yh indicate the approximations of w and y.

Remark 3 The current formulation requires only one update, namely y(tn+1).
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Remark 4 For linear systems (e.g., f(y) = ay), equation (3.4) reduces to the mid-
point time-integration rule for the nodal degrees-of-freedom yk = y(tk)

yn+1 − yn =
a∆tn

2
(yn+1 + yn) (3.5)

and to the well-known Crank-Nicolson scheme, in the case of a linear partial differ-
ential equation (PDE).

Remark 5 For nonlinear equations, a mid-point scheme is also recovered when a
single-point quadrature rule in time is applied. Such an approach was used in the
numerical implementation of the SUPG method for Lagrangian hydrodynamics, since
the algorithmic structure of the space-time formulation reduces to a classical semi-
discrete time-integration scheme, with all the consequent advantages from a compu-
tational performance point of view.

3.2 Space-time variational formulation

The variational formulation adopted in the Lagrangian hydrodynamics computations
is now described. Given a partition 0 < t1 < t2 < . . . < tN = T of the time
interval I =]0, T ], let In =]tn, tn+1], so that ]0, T ] =

⋃N−1
n=0 In. The space-time domain

Q = V × I can be divided into time slabs

Qn = V × In (3.6)

with “lateral” boundary Pn = S × In. A sketch of the general discretization in space-
time is presented in Figure 3.2. In general, the elements can assume fairly complex
shapes in space-time. However, we will only make use of discretizations prismatic
in time. The material domain V is further divided into material-subdomains V e

(elements in space, a partition of the initial configuration, fixed with respect to time).

Thus V =
⋃nel

e=1 V e, and, consequently, a typical space-time element is given by the
prism (i.e., tensor product domain)

Qe
n = V e × In (3.7)

It is also assumed that the space-time boundary is partitioned as Pn = P g
n ∪P h

n , P g
n ∩

P h
n = ∅ (i.e., Pn is divided into a Dirichlet boundary P g

n and a Neumann boundary P h
n ).

Using the notation V (X, t±n ) = limt→t±n
V (X, t), the classical space-time variational

formulation is defined as follows:

Find Y h ∈ Sh, such that ∀W h ∈ Vh

B(W h, Y h) + SUPG(W h, Y h) + DC(W h, Y h) = F(W h) (3.8)
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Figure 3.2. General finite element discretization in space-
time.

where B(·, ·) is the space-time bilinear form, SUPG(·, ·) is the stabilization operator,
and DC(·, ·) is the discontinuity-capturing operator. SUPG(·, ·) and DC(·, ·) are linear
in the first argument and nonlinear in the second. Specifically:

B(W h, Y h) =

∫

V

W h(X, t−n+1)·U(Y h(X, t−n+1))dV

−
∫

V

W h(X, t+n )·U(Y h(X, t−n ))dV

+

∫

Qn

(
−W h

,t ·U(Y h)−W h
,i ·Gi(Y

h)+W h ·Z(Y h)
)
dQ

+

∫

P g
n

W h ·Gi(Y
h)Ni dP (3.9)

27



F(W h) = −
∫

P h
n

W h ·HiNi dP (3.10)

where H i represents the Neumann flux along the i-th coordinate (a traction-type
boundary condition in Lagrangian hydrodynamics). The choice of the spaces Sh and
Vh defines the time integrator, and, in our case, causes (3.9) to further simplify.

3.2.1 Euler-Lagrange equations

The space-time formulation is best understood through the Euler-Lagrange equations,
obtained by integration by parts, assuming sufficient regularity of the solution:

∫

Qn

W h ·
{
U ,t(Y

h) + Gi,i(Y
h) + Z(Y h)

}
dQ

+

∫

V

W h(X, t+n ) ·
{
U(Y h(X, t+n )) − U(Y h(X, t−n ))

}
dV

−
∫

P h
n

W h ·
{
Gi(Y

h) − H i

}
NidP

+SUPG(W h, Y h) + DC(W h, Y h) = 0 (3.11)

The integral over the space-time domain Qn in (3.11) tests the system of PDEs
on the space-time domain, the integral over the spatial domain V enforces weak
continuity of the solution across time-slabs, according to the causality principle of
temporal evolution. The integral over the lateral space-time surface P h

n on the third
line tests the Neumann boundary conditions (Dirichlet conditions are embedded in
the definition of the trial functions), while the last two terms are yet to be defined.

3.3 Second-order in time formulation

In terms of function spaces, we will assume that the trial function space Sn is given by
the piecewise-linear, continuous functions on Q = V ×]0, T [ (see Fig. 3.3), while the
test function space Vh will be given by functions that are continuous piecewise-linear
in space and discontinuous, piecewise-constant in time (see Fig. 3.4 for details in the
one-dimensional case). Therefore,
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Figure 3.3. Local trial functions for the second-order time
integrator, in the one-dimensional case. ξ is the local space
coordinate, while η is the local time coordinate.
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Figure 3.4. Local test functions for the second-order time
integrator, in the one-dimensional case. ξ is the local space
coordinate, while η is the local time coordinate.
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Sh =
{
V h : V h ∈ (C0(Q))m,

V h
∣∣
Qe

n
∈ (P1(V

e) × P1(In))m, V h = Gbc(t) on P g
n

}
(3.12)

Vh =
{
W h : W h

∣∣
V
∈ (C0(V ))m,

W h
∣∣
Qe

n
∈ (P1(V

e) × P0(In))
m, V h = 0 on P g

n

}
(3.13)

with m = 2nd + 1, nd ∈ {1, 2, 3}. Equation (3.8) reduces to

0 =

∫

V

W h(X) · U(Y h(X, tn+1)) − W h(X) · U(Y h(X, tn)) dV

+

∫

Qn

(
−W h

,i · Gi(Y
h) + W h · Z(Y h)

)
dQ

+

∫

P g
n

W h · Gi(Y
h)NidP +

∫

P h
n

W h · H iNi dP

+SUPG(W h, Y h) + DC(W h, Y h) (3.14)

Since Y h is continuous in space and time, there is no need to distinguish between
positive and negative limit values for a certain instant in time. In addition, W h is
constant in time, so W h = W h(X) on each space-time slab. The time derivative of
W h vanishes, leaving only the jump terms in time to represent the time-derivative
operator.
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Chapter 4

SUPG Stabilization

SUPG stabilization of hyperbolic systems of conservation laws is well established, and
one can refer to the paper by Shakib, Hughes and Johan [44] for an extensive survey
of the main techniques and corresponding references.

It is also documented in the literature that SUPG stabilization prevents lock-
ing/artificial stiffness for P1-elements (see, e.g., [31, 35, 36, 34]).

4.1 A multiscale perspective

There is a multiscale interpretation to the SUPG stabilization concept, which is pre-
sented next. Let us start from the variational form of the Lagrangian hydrodynamics
equations (3.8), in which we assume, at the abstract level, that it is possible to have
full knowledge about the exact solution Y ∈ S, with Sh ⊂ S. The test space coun-
terpart of S is V ⊃ Vh. Hence, (3.8) reduces to:

B(W , Y ) = F(W ) (4.1)

Notice that the SUPG and DC operators have not been included, since V contains
full information about the solution Y . For the sake of simplicity, we will assume that
no body forces or Neumann conditions are applied, so that F(W ) ≡ 0, throughout.

Let us now decompose the solution into a coarse-scale component, or mesh solution
Y h ∈ Sh (the component of Y resolved by the numerical mesh), and a fine-scale or
subgrid component Y ′ ∈ S ′, (S ′ = S\Sh is the complement of Sh to S). Analogously,
the test function W can be decomposed as W = W h + W ′, W ′ ∈ V ′ = V\Vh.
Assuming that V ′ and Vh are linearly independent, as well as S ′ and Sh, leads to a
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decomposition of the original problem into two subproblems, namely:

B(W h, Y h + Y ′) = 0 (mesh-scale problem) (4.2)

B(W ′, Y h + Y ′) = 0 (subgrid-scale problem) (4.3)

The sub-grid scale equation (4.3) can be simplified by making a local linearization
(for details, see [40]). On each element, the nonlinear operators are linearized about
a local base solution (for example the average values of Y h over each element). The
residual operator Res is defined by means of the quasi-linear form of the Lagrangian
hydrodynamics equations:

Res = L = A0
∂

∂t
+ Ai

∂

∂Xi
+ C (4.4)

Equation (4.3) will then transform, after linearization, to

(W ′,LY ′) = −(W ′,LY h) = −(W ′, Res(Y h)) (4.5)

where (·, ·) indicates the L2 inner product over the space-time slab, and boundary
terms have been omitted, for the sake of brevity. Formally, one can invert (4.5) by
means of an inverse integral operator L−1, involving a Green’s function kernel G′

Y ′|Qe
n
(X) = −

∫

Qe
n

G′ Res(Y h) dQ (4.6)

Although this is only a formal step, it becomes apparent, after detailed derivations
are carried out, that:

1. The Lagrangian hydrodynamic equations simplify, after linearization, to the
wave equation. It is easy to verify the assertion in the case of compressible
gas dynamics. It is well known that the linearization of the compressible Euler
equations is given by the equations of acoustics, which are hyperbolic wave
equations. Hence, G′ can be proved to be a typical wave propagation Green’s
function kernel.

2. The multiscale analysis confirms the argument of Kuropatenko [32] regarding
the acoustic nature of the artificial viscosity in the limit for weak shocks or,
more appropriately, isentropic compressions. In this case the solution is smooth
enough to be amenable to local linearization, and the presented multiscale anal-
ysis applies in a very strict sense. Detailed derivations on how the SUPG
stabilization relates to the Kuropatenko analysis and the ”acoustical” part of
HEMP-type viscosities [4, 52] are found in [40].
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Equation (4.2) is amenable to a local linearization:

B(W h, Y h + Y ′) ≈ B(W h, Y h) + (L∗W h, Y ′) (4.7)

where L∗ is the adjoint operator of L. Equation (4.7) is used to implement the
stabilization term. The definition of the SUPG operator is documented for the case
of hyperbolic systems (see Shakib, Hughes and Johan [44], and the earlier paper by
Hughes and Mallet [22], for a discussion), and consists in approximating the matrix
Green’s function G′ by a tensor τ

SUPG(W h, Y h) = −
(nel)n∑

e=1

∫

Qe
n

(L∗
SHW h) · τ Res(Y h)dQ (4.8)

where L∗
SH = −AT

0 ∂t − AT
i ∂i is the adjoint of the acoustic wave propagation dif-

ferential operator LSH = A0∂t + Ai∂i (in the SUPG literature, LSH is termed the
generalized advective operator). The definition of the tensor τ is specific to the sys-
tem of equations to be solved and a general methodology for its derivation can be
found in [44]. However a strict implementation in multiple dimensions of such an
approach could not be pursued successfully in the Lagrangian case, and a new design
was therefore developed.

4.2 A new design requirement: Galilean invari-

ance

It was found extremely beneficial to ensure Galilean invariance of the SUPG stabi-
lization operator. It became apparent in early numerical simulations that lack of
Galilean invariance could lead to instabilities [40].

The issue can be best understood by noticing that an SUPG method corresponds
to a Petrov-Galerkin formulation in which the test function space depends on the
structure of the system of partial differential equations simulated. Therefore, it is
important to ensure that the test function space is invariant under Galilean trans-
formations, otherwise the stability properties of the SUPG method may be observer-
dependent. In particular, the perturbation to the Galerkin test space represented by
−(L∗

SHW h) · τ cannot be an explicit function of the material velocity v, unless v

appears in differentiated form.

In addition, it easy to realize that the subgrid-scale solution must be Galilean
invariant, since it is the difference of the vectors Y and Y h. Therefore, it is also
reasonable to impose Galilean invariance for the approximation Y ′ ≈ τ Res(Y h).
If both the perturbation to the test function and the approximation to Y ′ are to be
invariant, then the overall SUPG operator results invariant.

33



As discussed in detail in [40], invariance can be achieved by removing the kinetic
energy equation from the total energy equation before deriving the quasi-linear form.

4.3 Stabilization in the Lagrangian framework

In the framework of Lagrangian hydrodynamics it is possible to simplify the ex-
pressions for the SUPG operator, since stabilization affects only the momentum and
energy equations. This can be easily seen by carrying over the calculation of stabi-
lization terms by brute force in the one-dimensional case, for which the approach in
[44] applies successfully. The rationale is that the kinematic equations relating the
rates of displacement to the velocities are actually ODEs in the degrees-of-freedom of
the discrete solution, so that stabilization - peculiar to boundary value problems for
PDEs - is not needed. It is possible then to reformulate the structure of the matrix
τ as

τ =

[
0nd×nd

0nd×(nd+1)

0(nd+1)×nd
τ̂ (nd+1)×(nd+1)

]
(4.9)

As it is easily realized, in the case of one, two and three dimensions in space, instead
of developing a τ tensor of size 3 × 3, 5 × 5, or 7 × 7, it is sufficient to compute just
the τ̂ tensor of size 2 × 2, 3 × 3, or 4 × 4, respectively.

Remark 6 Since stabilization is applied only to the momentum and energy equations,
it is easy to verify that L̂∗ = L̂∗

SH.

The newly developed τ̂ tensor reads:

τ̂ =
∆t

2 CFL
A−1

0 =
min1≤j≤nel

(∆xj/(cs)j)

2
A−1

0 (4.10)

Remark 7 CFL = ∆t max1≤j≤nel
((cs)j/∆xj) is the global Courant-Friedrichs-Levy

number, (cs)j is the speed of sound, ∆t is the time increment and ∆xj is a charac-
teristic mesh scale in the current configuration, such as the smallest distance between
nodes belonging to the same element. The term ∆t/(2CFL) = minnel

(∆x/(2cs)) does
not vanish as ∆t tends to zero, preventing the stabilization term from decaying too
rapidly for small time steps. Such issues have been extensively discussed, for example,
in [5] and [11].

Remark 8 A0 is diagonal, allowing for a fast computation of the stabilization term,
compared to [44], in which the inverse square root of a tensor has to be evaluated or
approximated, in the case of multiple dimensions.
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Remark 9 The stabilization matrix τ has been devised as a very simple generaliza-
tion of the one-dimensional matrix obtained by the approach described in [44]. The
details of the one-dimensional computations are in [41], and lead to the expression

τ̂ =
∆t

2
√

1 + α2
A−1

0 (4.11)

where α = ∆t (cs)j/∆xj is the local CFL number.
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Chapter 5

Discontinuity capturing operator

The design of the Discontinuity Capturing (DC) operator is essential to the overall
performance of the numerical method. Shocks must be smoothed in a band of possibly
no more than 3-4 elements. Three key elements are the basis for the design of the
proposed DC operator:

1. A von Neumann-Richtmyer [51] artificial viscosity was adopted with an addi-
tional artificial heat flux analogous to the one proposed by Noh [39].

2. The computation of the mesh scale parameter present in the von Neumann-
Richtmyer formula is performed by combining the approach of Wilkins [52] and
Tezduyar [48, 47, 49]. Special care was taken to avoid abrupt element-to-element
variations of the mesh scale parameter because of negative consequences on the
artificial viscosity performance. This concept is presented in detail in [9].

3. It was also found very important to have the viscosity peak on the elements
leading the shock layer, as the shock moves through the material. This allowed
for improved smoothness of the solution across the shock layer and a reduction
of the viscosity coefficient.

In spite of not being particularly sophisticated compared to the latest concepts in the
field (see, e.g., [4, 9, 8] for advanced concepts on TVD limiting), the proposed viscosity
proves robust and effective even in the more demanding tests. Most of the advanced
concepts to date use edge-centered viscosities, easily implemented in the context of
finite-difference or finite-volume methods, but less straightforward to implement for
a standard finite element method. It was felt to be beyond the scope of the present
paper to investigate such concepts. These may be the focus of future research.

Remark 10 Although improvements can be made on the viscosity, the numerical re-
sults are in most cases equal or sometimes superior to state-of-the-art techniques for
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both triangular and quadrilateral meshes. Apparently, improved gradient represen-
tation and SUPG stabilization seem to have a very significant effect on the overall
quality of the results.

The discontinuity capturing operator is implemented as follows:

DC(W h, Y h) =

(nel)n∑

e=1

∫

Qe
n

GradW h
v : P art dQ (5.1)

+

(nel)n∑

e=1

∫

Qe
n

GradW h
E ·
(
P T

artv + Qart

)
dQ

−
∫

Pn

W h
E

(
P T

artv · N
)

dP (5.2)

where

P art = JσartF
−T = σart(cofF ) (5.3)

Qart = JF−1qart = (cofF )T qart (5.4)

and

σart = ρ νart
1

2

(
grad v + gradT v

)
(5.5)

qart = ρ νart g2 (ρ0/J, p) grad p (5.6)

νart = Cν f∗(J̇) h2
b |div v| χ({div v < 0}) (5.7)

where χ({div v < 0}) is the characteristic function of the set {div v < 0} and Cν =
2.0. W h

v is the test function vector relative to the momentum equations only, and
W h

E is the scalar test function relative to the energy equation. P art and Qart are the
Piola transformation of the artificial stress tensor σart and artificial heat flux vector
qart. σart is a function of the symmetric part of the velocity gradient in the current
configuration, which ensures invariance under rotations and Galilean transformations.
qart is a function of the gradient of the internal energy, since the pressure gradient is
scaled with the term ∂e/∂p = ρ0g2 (ρ0/J, p). f∗ is a term depending on the element
type:

f∗ =

{
1, for segments, quadrilaterals, hexahedra

1 + e−β ∂
∂t

(ln J), for triangles, tetrahedra
(5.8)

In practice, the derivative of the natural logarithm of J further shifts the peak
of artificial viscosity ahead of the shock for triangles and tetrahedra, increasing the
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smoothness of the shock profile. β = 0.75 was found an appropriate choice. The time
derivative is easily computed by means of the predictor-corrector time integration
strategy developed in chapter 7.

Remark 11 Since f∗ is a function of J̇ , it maintains the invariance and objectivity
properties of the artificial viscosity operator.

Remark 12 The term P T
artv, or artificial stress dissipation is usually not incorpo-

rated in state-of-the-art viscosities for aerospace computations (see [17, 44, 48, 47,
49]), but it turns out to be extremely important in implosion computations when shocks
are generated by moving boundaries (e.g., piston-type boundary conditions).

Remark 13 Notice also that a boundary integral for the dissipation P T
artv has been

added. Using integration by parts, it is easily understood that such term contributes to
the discretization of the divergence of P T

artv. A similar approach would apply to P art

in the momentum equation and to Qart in the energy equation, but such additional
contributions were found to negatively affect numerical results, and were therefore
omitted.

Remark 14 A considerable literature is available on discontinuity capturing oper-
ators for finite element methods. Such operators usually take the form of a purely
residual-based artificial viscosity, rapidly vanishing when the solution is smooth, as
for isentropic compressions/expansions. This is a very useful property, but attempts
made to design a residual-based viscosity for Lagrangian hydrodynamics simulations
have not been successful to date. The main problem related to the residual-based vis-
cosities tested was their rapid variation from element to element, which undermines
their potential in the case of transient shock propagation computations. Further in-
vestigations will be directed toward this issue.

Remark 15 Special care needs to be devoted to the definition of hb, the mesh scaling,
in the definition of the artificial viscosity, as documented in the next section.
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5.1 The mesh parameter “hb”

The definition of the mesh parameter can be expressed as

h̃b = 0.75


2‖b‖l2

(
nen∑

a=1

|b · grad Na(x)|
)−1


 (5.9)

+0.25


2‖v̇‖l2

(
nen∑

a=1

|v̇ · grad Na(x)|
)−1


 (5.10)

b = grad‖v − v
(e)
min‖l2 (5.11)

This definition is a compromise between earlier definitions by Wilkins [52], in the con-
text of hydrocode simulations for structural mechanics, and Tezduyar, in the context
of SUPG methods for the compressible Navier-Stokes equations (see, e.g., [48, 47, 49]).
Effectively, (5.10) is a linear combination of the length scale in the direction of the
local gradient of the magnitude of the velocity and the local acceleration direction.

Remark 16 The vector v
(e)
min is the velocity vector of minimum norm over the element

e, namely

v
(e)
min = argmin1≤n≤ne

np
‖v(e)

n ‖l2 (5.12)

where ne
np is the number of nodes of the element e. Subtracting v

(e)
min from v in (5.11)

is consistent with Galilean invariance and improves the accuracy in detecting the
direction normal to the shock front for elements of poor aspect ratio.

Remark 17 Both vectors b and v̇ are used to define h̃b, since the acceleration direc-
tion was found superior in detecting the normal to the shock front, while the vector
b was found more reliable in stabilizing mild but persistent oscillations near moving
boundaries, a common feature of hydrocode simulations.

5.1.1 A limiting strategy for the mesh parameter

One of the important aspects in the design of artificial viscosities, is to make sure
they vary smoothly across shock fronts, otherwise some of the elements may become
over-damped compared with their closest neighbors, with very negative effects on the
quality of the results. A simple limiter acting on h̃b was designed. A more general
approach would be to apply a limiting technique directly to the viscosity (see, e.g.,
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Figure 5.1. Sketch of the segments connecting the mid-
points for quadrilaterals (left) and triangles (right).

[4, 9, 8]), which might improve results. However, one of the appealing features of
the currently implemented limiting on h̃b is its locality in terms of the element data
structure. For this purpose, it will be useful to define the vector:

ub =
0.75b + 0.25v̇

‖0.75b + 0.25v̇‖l2
(5.13)

5.1.2 Quadrilaterals

In the case of quadrilaterals, the limiting consists in taking the segments connecting
the mid-point of opposite edges of the quadrilateral (ξl and ηl on the left sketch of
Fig. 5.1), and enforcing the following constraint:

hb = min


h̃b,

√(
cos(θl)

‖ξl‖l2

)2

+

(
sin(θl)

‖ηl‖l2

)2

 (5.14)

θl =
π

2

arccos(|ub · ξ|)/‖ξl‖l2)

arccos(|ξ · η|)/(‖ξl‖l2‖ηl‖l2)
(5.15)

In practice, hb is bounded by the contour of an ellipse of semi-axes ξl/2 and ηl/2.

5.1.3 Triangles

In the case of triangles, the segments ξl, ηl, and ζl connecting the mid-points of the
triangular element edges (see Fig. 5.1) are used to limit hb according to

hb = min
(
h̃b, argminw∈{ξ

l
,η

l
,ζ

l
}

(
|h̃b · w|/‖w‖l2

))
(5.16)
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In this case, hb is bounded by its maximal projection on ξl, ηl, or ζ l (in the l2-inner
product sense).
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Chapter 6

Global conservation

The proposed formulation is globally conservative. We assume P g
n = ∅, as is com-

monly done in the derivation of conservation laws (see Hughes et al. [19]). Let us
set to unity over a time-slab one of the entries of the test vector W h correspond-
ing to the momentum or energy equations, while keeping zero all remaining entries.
Namely, W h

i = 1, for some i ∈ {nd + 1, . . . , 2nd + 1}, and W h
j = 0 if j 6= i. This

choice is made possible by the fact that W h is piecewise continuous linear in space
and constant discontinuous in time, so it can represent global constants. Equation
(3.8) reduces to:

0 =

∫

V

U i(Y
h(X, t−n+1)) dV − U i(Y

h(X, t−n )) dV

+

∫

P h
n

H iNi dP (6.1)

which is a statement of conservation from time t−n to time t−n+1 for the U i entry of the
conservation variables vector U , provided the boundary integral vanishes. Indeed,
(6.1) is readily obtained, since W h

,t and W h
,i vanish and so do the SUPG(W h, Y h)

and DC(W h, Y h) operators, by definition. Finally, Z(Y h), has zero entries for the
momentum and energy equation, since it is not a true source term, but, rather, a
kinematic term containing the components of the velocity field for the displacement
equations.
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Chapter 7

Explicit predictor/multi-corrector
algorithm

Lagrangian hydrodynamics algorithms typically adopt explicit time-marching schemes,
since ideally, for time-accuracy purposes, the algorithms should run time-steps very
close to CFL = 1, in accordance with a linearized analysis. When explicit algorithms
are used for complex nonlinear systems, often nonlinear effects can further limit the
CFL values. On the other end, implicit time-marching schemes become effective when
run at significantly larger CFL values, and although examples of implicit hydrocodes
are present (e.g., in contact dynamics applications), usually explicit approaches are
preferred.

An explicit, predictor/multi-corrector scheme can be easily defined for the pro-
posed method, by modifying a standard implicit Newton nonlinear iterative solver.
In fact, if only the local integrals contributing to a lumped mass matrix are assembled
into a modified Newton tangent matrix, no linear system solves are required as the
iteration proceeds. A detailed explanation of the theoretical framework for this class
of time-integration algorithms is presented in Hughes [18], p. 562, while the paper by
Shakib, Hughes and Johan [44] is very useful for an example of the implementation in
the context of compressible flow computations for aerospace applications in Eulerian
coordinates.
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7.1 The general nonlinear system

On a single time-slab, the solution and test vector functions can be expressed as:

Y h(X, t) =

nnp∑

A=1

NA(X)
(
π+

n (t)yA;(n+1) + π−
n (t)yA;(n)

)
(7.1)

W h(X, t) =

nnp∑

A=1

NA(X)wA;(n+1) (7.2)

with X ∈ V, t ∈ In, π+
n (t) = (t − tn)/∆t, and π−

n (t) = (tn+1 − t)/∆t. Also, let

(L∗
adv)

h
A = −AT

i NA,i (7.3)

(Lh
±)A = A0NAπ±

,t + AiNA,iπ
± + CNAπ± (7.4)

Substitution of (7.1)–(7.4) into (3.14) yields

0 =

nnp∑

A=1

wA ·
{∫

V

NA U

(
nnp∑

B=1

NByB;(n+1)

)
− NAU

(
nnp∑

B=1

NByB;(n)

)
dV

−
∫

Qn

NA,i
Gi

(
nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
)

dQ

+

∫

Qn

NAC

nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
dQ

+

∫

P g
n

NA · Gi

(
nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
)

Ni dP

+

∫

P h
n

NA · H iNi dP

−
nel∑

e=1

∫

Qe
n

(L∗
adv)

h
A · τ

nnp∑

B=1

(
(Lh

+)ByB;(n+1) + (Lh
−)ByB;(n)

)
dQe

n

+DC

(
NA,

nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
)}

(7.5)

7.2 Newton solver

Since on the interval In the nodal values yB;(n) are known from the previous time-step,
the system can be abstractly represented as

w · ÑL(y(n+1); y(n)) = 0 (7.6)
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and, since (7.6) has to hold for any w, we obtain

ÑL(y(n+1); y(n)) = 0 (7.7)

The Newton iteration reads:

ÑL(y(n+1); y(n)) ≈ ÑL(y(i); y(n)) +
∂ÑL(y(i); y(n))

∂y
δy = 0 (7.8)

with δy = (y(i+1) − y(i)). Here the upper index (i) refers to an iterate of the Newton
algorithm, while y(n+1) and y(n) refer to the solutions at times tn+1 and tn, respec-
tively. Starting from (7.8) we can also accommodate boundary conditions of Dirichlet

type, by removing the rows of ÑL corresponding to nodes on the Dirichlet part of
the boundary. Equation (7.8) can be therefore rewritten as:

M ∗(i)

δy = −R(i) (7.9)

where the more convenient notation

M ∗(i)

= ∂yNL(y(i); y(n)) (7.10)

R(i) = NL(y(i); y(n)) (7.11)

has been used, and NL and ∂yNL are obtained from ÑL and ∂yÑL, respectively,
after Dirichlet boundary conditions have been accounted for, and R is the algebraic
residual vector.

7.3 Assembly

M ∗ and R are assembled in the usual way, namely:

R(i) =
nel

A
e=1

Re;(i) (7.12)

M ∗(i)

=
nel

A
e=1

M e;(i) (7.13)

where A is the finite element assembly operator (see, e.g., [2, 18]), and Re;(i), M e;(i)

are the element contributions to the residual and tangent matrix, respectively. The
solution can be expressed, in space-time, as:

Y e;(i)(X, t) =
nen∑

a=1

N e
a(X)

(
πe;+

n (t)y(i)
a + πe;−

n (t)ya;(n)

)
(7.14)
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where N e
a, is the local test function in space (constant in time on the space-time slab

under consideration), and πe;±
n are the local trial functions in time. With the previous

assumptions,

Re;(i) = {Re;(i)
a } (7.15)

Re;(i)
a =

∫

V e

N e
a U
(
Y e;(i)(X, tn+1)

)
− N e

a U
(
Y e;(i)(X, tn)

)
dV

+

∫

Qe
n

−N e
a,i

Gi

(
Y e;(i)(X, t)

)
+ N e

aC Y e;(i)(X, t) dQ

+

∫

P
(g;e)
n

N e
a · Gi

(
Y e;(i)(X, t)

)
Ni dP +

∫

P
(h;e)
n

N e
a · H iNi dP

+

∫

Qe
n

AT
j N e

a,j
· τ
(
A0Y

e;(i)
,t + AkY

e;(i)
,k + CY e;(i)

)
dQ

+ DCe(N e
a, Y

e;(i)) (7.16)

where a denotes a local node number for element e. In the explicit variant considered

here, a simple approximation of M ∗(i)

is used. In this case,

M ∗(i) ≈ ML(i)

=
nel

A
e=1

[
δab

∫

V e

N e
aA0 dV

]
(7.17)

where δab is the Kronecker delta. The algorithm is summarized in Table 7.1. It is
important to observe that if single-point quadrature is used for the integration in
time, a mid-point integration scheme is recovered. This version of the more general
space-time algorithm has been used in all the computations, where, typically, three
iterations of the predictor/multi-corrector were used.

Segregating the unknowns, the general form of the iteration is




ML
uu 0 0

0 ML
vv 0

0 0 ML
pp






δu(i)

δv(i)

δp(i)


 = −




R(i)
u

R(i)
v

R(i)
p


 (7.18)

where ML
uu, ML

vv and ML
pp are diagonal.

7.3.1 Time-integration strategy for displacements

For the displacement equations,

δu(i) = −(ML
s )−1Ms

(
u(i) − un − ∆tn

2

(
v(i) + vn

))
(7.19)
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Retrieve loop parameters: nstep, imax

Initialize: set y(0)

For n = 0, . . . , nstep (Time-step loop begins)
Predictor: y(0) = y(n)

Set ∆t (respecting the CFL condition)

For i = 0, . . . , imax − 1 (Multi-corrector loop begins)

Form R(i)(y(i); y(n))

Form ML(i)

(y(i))

Update δy(i): ML(i)

δy(i) = −R(i)(y(i); y(n))

Corrector: y(i+1) = y(i) + δy(i)

End (Multi-corrector loop ends)

Time update: y(n+1) = yimax

End (Time-step loop ends)
Exit

Table 7.1. Outline of the predictor-multicorrector algo-
rithm. Three iterations of the predictor/multi-corrector were
used in the computations.

where Ms indicates the consistent mass matrix for the displacements, and ML
s is its

lumped version.

Remark 18 The much simpler approach of solving a set of ODEs for the nodal
displacements, namely,

δu(i) = −
(

u(i) − un − ∆tn
2

(
v(i) + vn

))
(7.20)

produced very poor results for the density profiles in the most demanding simulations.
Early attempts proved this approach too inaccurate to be further pursued.
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Chapter 8

General considerations on
implementation

A number of additional issues need to be addressed before proceeding with the analysis
of the numerical results.

8.1 Post-processed variables

The algorithm detailed in Table 7.1 directly computes the displacements, velocities
and pressures. If other quantities of interest are to be computed, the complete solution
update strategy is summarized as follows:

1. The primary variables Y = [u, v, p]T are solved for numerically, using the
procedure detailed in Table 7.1.

2. The determinant J = det F = [∂xi/∂Xj ] of the deformation gradient is com-
puted from the displacement u.

3. The current configuration density ρ = ρ0/J is determined.

4. The internal energy e is determined using the equation of state (2.11).

Note that energy and density are not directly computed, but are determined by “post-
processing” the displacements and pressures. Any time they appear in the variational
form, their expressions in terms of the initial density ρ0, the Jacobian J , the pressure
p and the specific heat ratio γ are used.
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8.2 Proper specification of the density initial con-

dition

In order to start the computations, the initial conditions have to be set. A cell-
centered, piecewise constant approximation for the initial density ρ0 proved the most
accurate option, while displacements, velocities and pressure are piecewise-(multi-
)linear continuous functions, with degrees-of-freedom centered at the nodes.

Because a finite element approximation is adopted, the matching of pressures and
densities in the initial conditions is best accomplished in an L2 (weak) sense, rather
than point-wise.

For this purpose, a single-point quadrature L2-projection technique was used. This
technique is sketched in Figure 8.1:

1. pressure and density are initially considered constant over each element. Namely:

pC
0 (X) =

nel∑

e=1

p0;eχ(Ve) (8.1)

ρC
0 (X) =

nel∑

e=1

ρ0;eχ(Ve) (8.2)

where χ(Ve) is the characteristic function relative to the element domain Ve.

2. Pressure and density are projected using the lumped mass matrix ML
uu onto

the space of continuous nodal functions, and a node-centered approximation to
both is generated. More precisely:

pN
0;A =

(
nel

A
e=1

∫

Ve

NA pC
0 (X) dV

)

(
nel

A
e=1

∫

Ve

NA dV

) =

(
nel

A
e=1

∫

Ve

NA p0;e dV

)

(
nel

A
e=1

∫

Ve

NA dV

) (8.3)

ρN
0;A =

(
nel

A
e=1

∫

Ve

NA ρC
0 (X) dV

)

(
nel

A
e=1

∫

Ve

NA dV

) =

(
nel

A
e=1

∫

Ve

NA ρ0;e dV

)

(
nel

A
e=1

∫

Ve

NA dV

) (8.4)

where pN
0;A and ρN

0;A are the initial pressure and density at node A (in the global
node numbering), respectively. The integrals in (8.3–8.4) are computed using a
single-point quadrature.

49



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

After step (1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

After step (2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

After step (3)
p

0

ρ
0

p
0

ρ
0

p
0

ρ
0

Figure 8.1. Sketch of the preprocessing procedure for pres-
sures and densities in one space dimension.

3. The nodal density is projected back onto the elements, taking its area-weighted
average over each element. Therefore, (8.2) now holds with

ρ0;e =
1

Ve

∫

Ve

ne
np∑

a=1

ρN
0;aNa dV (8.5)

where the the subscript a refers to the local, element node numbering, contrasted
with the global node index A in (8.4). Again, the integrals in (8.5) are computed
using a single-point quadrature.

Remark 19 The described pre-processing strategy for the density conserves the total
mass.

8.3 Post-processing of the current configuration

density

The issue of pressure/density matching manifests itself again when an accurate ap-
proximation for the current configuration density is sought. In this case the lumped
mass projection technique is applied again, to obtain a node-based current density. In
the terminology of finite-difference/finite-volume methods, this would roughly amount
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to computing the density relative the dual volumes (co-volumes) of the mesh. Namely,

ρN
A =

(
nel

A
e=1

∫

Ve

NA ρ0(X)/J dV

)

(
nel

A
e=1

∫

Ve

NA dV

) (8.6)

Remark 20 Also the post-processing approach for the density conserves the total
mass.

8.4 CFL condition

First, it is important to stress that the Courant-Friedrichs-Levy (CFL) condition
must incorporate the effects of the artificial viscosity, otherwise the code can gener-
ate so-called “q-instabilities”. The proposed algorithm, when only one iteration of
the predictor/multi-corrector approach is applied, yields exactly the same discrete
equations generated by the first-order space-time method described in [43]. Since the
first iteration is the most restrictive, it is sufficient to derive the CFL condition based
on this first-order method. The von Neumann stability analysis developed in [43] for
a linear one-dimensional advection-diffusion equation, yields:

2
∆t

∆h2
e

(νarte + c2
se

τ) ≤ CFL < 1 (8.7)

where, with respect to the e-th element, cse
is the advective velocity (the speed of

sound in our case), νarte is the artificial viscosity, ∆he is the mesh characteristic length
(the minimal distance between element nodes), and τ is the stabilization time-scale
parameter.

Recalling the expression for the stabilization tensor (4.10),

τ = τA−1
0 =

∆t

2 CFL
A−1

0 (8.8)

it is easily seen that the Jacobian A−1
0 plays simply the role of a scaling term, making

the equations dimensionally consistent. Substituting τ = ∆t/(2 CFL) in (8.7), and
rearranging like terms, we obtain:

0 = c2
se

∆t2 + 2νarte CFL ∆t − (CFL)2 ∆h2
e (8.9)

1 > CFL (8.10)
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Figure 8.2. Behavior of ∆t/∆tadv as a function of Peν .
The optimum is to have ∆t/∆tadv = 1, that is, the CFL con-
dition is uniquely due to the speed of sound. This situation
is achieved in the limit Peν → ∞.

(8.9) is a quadratic equation that can be easily solved for ∆t > 0:

∆t = CFL

√
ν2

arte + ∆h2
e c2

se
− νarte

c2
se

= CFL
∆he

cse

(√
1

4Pe2
ν

+ 1 − 1

2Peν

)

=
∆tadv

2Peν

(√
1 + 4Pe2

ν − 1
)

(8.11)

where Peν = cse
he/(2νarte), ∆tadv = CFL∆he/cse

, and ∆he is the minimum of the
distances (measured in the current configuration) between two distinct vertices of the
e-th element. A plot of ∆t/∆tadv is presented in Figure 8.2. Let us now analyze the
limit behavior of (8.11) holding the speed of sound cse

fixed and varying νarte :

∆t ∼ CFL
∆he

cse

= ∆tadv , as νarte → 0 (8.12)

∆t ∼ CFL
∆h2

e

2νarte

= ∆tνarte
, as νarte → ∞ (8.13)

It is clear from this analysis that high values of the artificial viscosity have a detri-
mental effect on the time step magnitude. However, the values of νarte were usually

52



of the same order of (and typically smaller than) the product ∆he cse
, so that the

additional constraint due to the artificial viscosity is only 10–20% more severe than
the purely advective CFL condition, since usually Peν ∈ [3, 10].
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Chapter 9

One-dimensional tests

A number of one-dimensional Riemann problems, for which exact solutions are easy
to compute, was solved numerically (the reader can refer to the book by Toro [50] on
Eulerian numerical methods for a comprehensive description). The SUPG method

Test ρ
(L)
0 ρ

(R)
0 p

(L)
0 p

(R)
0 v

(L)
0 v

(R)
0 γ

Sod 1.0 0.125 1.0 0.1 0.0 0.0 1.4
LWC 1.0 1.0 1000 0.01 0.0 0.0 1.4
2SH 5.99924 5.99242 460.894 46.0950 19.5975 -6.19633 1.4
Noh – 1.0 – 0.0 – -1.0 5/3

Table 9.1. One-dimensional test suite: Initial conditions.
(L) and (R) stand for the left and right states, respectively.
The following nomenclature is used: “Sod” refers to the Sod
test, “LCW” refers to the left half of the Woodward-Colella
blast test problem, “2SH” refers to the two-shock problem,
and “Noh” refers to the Noh test. In the case of the Noh test
some entries of the table are missing, since there is no left
state, but just a rigid wall boundary condition.

was compared with a standard hydrocode implementing a HEMP-viscosity without
limiter (see, e.g., Benson [4], and [41] for complete details). The HEMP artificial
viscosity had constants equal to 1.5 for the von Neumann-Richtmyer part and 0.06
for the linear part. Results for the planar version of the implosion test devised by
Noh [39] are also presented. Table 9.1 summarizes the initial conditions and Table 9.2
presents the exact intermediate ∗-state values at the final time of each simulation. All
one-dimensional simulations were run at CFL = 0.9, for both the standard hydrocode
and the SUPG method.
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Test ρ
(L)
∗ ρ

(R)
∗ p∗ v∗

Sod 0.42632 0.26557 0.30313 0.92745
LWC 0.57506 5.99924 460.894 19.5975
2SH 14.2823 31.0426 1691.64 8.68975
Noh 4.0 4.0 4/3 0.0

Table 9.2. One-dimensional test suite: Exact solution of
the Riemann problem (∗-states). The nomenclature for the
test cases is the same as in Table 9.1. Notice that in the
case of the Noh test no contact discontinuity is generated

(ρ
(L)
∗ = ρ

(R)
∗ ).

9.1 Sod’s problem

The Sod’s test [45] is presented in Figures 9.1 and 9.2. The hydrocode delivers
good performance, but a pronounced overshoot is present in the energy plot and the
velocity shows low accuracy in the representation of the solution past the shock front.
The results for the SUPG method are better for the velocity. Although milder, an
overshoot is still present for the energy. One plausible explanation is the fact that, in
contrast to the density, the energy is just obtained by a point-wise calculation at the
nodal points. A conservative L2-projection technique could be more effective. The
contact discontinuity is captured within 2–3 elements by the SUPG method, due to
the specific pre-processing of the initial condition for the density, as mentioned in
section 8.2.

9.2 Left-half of Woodward-Colella blast

The left half of the Woodward-Colella [54, 53] interacting blast wave is shown in
Figures 9.3 and 9.4. Wiggles are clearly visible behind the shock location for velocity,
pressure, and density in the case of the hydrocode, while they are absent in the case of
the SUPG method. In addition, the pronounced over/under-shoot in the hydrocode
solution for the velocity/pressure at the beginning of the expansion (about x = −.25)
is attenuated in the SUPG plots.
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Figure 9.1. Hydrocode solution for the Sod test. The exact
solution is represented by the continuous line.
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Figure 9.2. SUPG solution for the Sod tests. The exact
solution is represented by the continuous line.
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Figure 9.3. Hydrocode solution for the left-half of the
Woodward-Colella blast test. The exact solution is repre-
sented by the continuous line.
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Figure 9.4. SUPG solution for the left-half of the
Woodward-Colella blast test. The exact solution is repre-
sented by the continuous line.

57



9.3 Two-shock problem

The two-shock test [50], shown in Figures 9.5 and 9.6, is the most demanding of the
suite in terms of robustness: A contact discontinuity is generated by the interaction of
two strong shocks. The test presents features very similar to implosion calculations.
The strong compression undergone by the initial computational domain, spanning
the interval [−1, 1], is clearly noticeable.

The hydrocode solution suffers from a few wiggles in the velocity and pressure
plots, absent in the case of the SUPG method. Although over/under-shoots are
present in the SUPG solution for the energy and density, they tend to be attenuated,
compared to the hydrocode results.

Remark 21 The Noh-type artificial heat flux is usually deprecated because it can
smear contact discontinuities. In our experience, however, contact discontinuities are
usually captured by the SUPG method within 2–4 elements, this spreading being mainly
due to the pre-processing of the initial density. After monitoring the evolution of the
contact layers throughout the simulations, no increase in their width was observed as
time progressed. A plausible explanation is that the artificial heat flux adopted herein
includes only a quadratic term in the mesh scaling, while the general form of the Noh
correction includes also a linear term. It seems that even if mild oscillations in the
velocity are switching on the artificial heat flux at the contact, its scaling keeps it
within the numerical error threshold.

9.4 Planar Noh’s test

In the planar Noh test [39] – a robustness test – a bar of perfect gas is driven against
a hard wall (the node at the left end of the computational domain), where zero
velocity/displacement boundary conditions are imposed. The initial pressure of the
gas is set to zero (namely 10−14), to obtain an infinite strength shock.

The hydrocode delivers good performance although a few wiggles are present past
the shock front for pressure and velocity. There is wall overheating in the element
facing the left boundary (a noticeable spike in the energy and a severe dip in the
density, see Fig. 9.7).

The SUPG method (see Fig. 9.8) shows no wiggles for pressure and velocity and
some moderate underheating at the wall, due to the use of the Noh-type heat flux
correction.
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Figure 9.5. Hydrocode solution for the two-shock problem.
The exact solution is represented by the continuous line.
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Figure 9.6. SUPG solution for the two-shock problem.
The exact solution is represented by the continuous line.
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Figure 9.7. Hydrocode solution for the one-dimensional,
planar Noh test. The exact solution is represented by the
continuous line.
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Figure 9.8. Second-order Hydro-SUPG for the one-
dimensional, planar Noh test. The exact solution is repre-
sented by the continuous line.
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9.5 Overall assessment for the one-dimensional tests

To comment on the overall performance of the SUPG method with respect to the
standard hydrocode approach, it is fair to say that usually the SUPG method out-
performs the hydrocode in terms of the displacement, velocity and pressure solution,
it is comparable in terms of the density solution and slightly worse for the internal
energy, which is however post-processed in a very crude way.
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Chapter 10

Two-dimensional numerical tests

A number of classical tests, very well documented in the technical literature (see, e.g.
[3, 4, 9, 8, 7] and references therein), is presented. Computations were performed on
isoparametric Q1-quadrilateral and P1-triangular elements. Since the mesh topology
represents an integral part of the tests, and, at the same time, very little work has
been published in the context of triangular/tetrahedral meshes, our approach has
been to design variants of the standard tests by subdividing each quadrilateral in the
original meshes into two triangles. The choice of the splitting is not unique in general
and, in all instances, results from multiple strategies are compared.

10.1 Preliminary test on triangular meshes: Pis-

ton problem

A first issue to be addressed in detail is whether or not the current formulation
generates artificial stiffness or even locking on triangular meshes. Two preliminary
tests were performed by meshing the domain [0, 1] × [0, 0.1] (see Fig. 10.1) with 500
elements of 1:1 aspect ratio, and 50 elements with 1:20 aspect ratio. Both simulations
were run at CFL = 0.75. These apparently trivial meshes are usually adopted to test
whether a finite element formulation induces locking in the incompressible limit. The
right boundary acts as a piston moving to the left with unit velocity, and generates a
shock wave. Unit density and zero internal energy (namely 10−14) initial conditions
are imposed.

In the present case, the equations allow compressibility effects, so locking is un-
likely, but artificial stiffness may occur. From the results shown in Figure 10.2, no
locking or artificial stiffness occurs, and the pressure profiles are comparable in quality
with simulations performed on quadrilateral elements.

62



Figure 10.1. Piston problem for triangles: Initial meshes.

Figure 10.2. Piston problem for triangles: Pressure. The
two solutions are evaluated at the same time step. Notice the
absence of any node-to-node oscillations, typical of artificially
stiff P1 elements.
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10.2 Saltzmann test in cartesian coordinates

The Saltzmann test evaluates the ability of a distorted mesh to capture the features of
a planar shock. A rectangular domain of gas is initially at rest. The bottom boundary
moves with unit velocity and generates a compression shock propagating upwards
through the domain. All other boundary conditions are of “roller” type, that is, zero
normal velocity (and, consequently, zero normal displacement). The Saltzmann test
is both a robustness and accuracy test. The initial meshes, an integral part of the
test case, are presented in Figure 10.3.

Three variants, differing by a scaling transformation, are presented. All meshes
are generated from a common layout of 10 quadrilateral elements in the horizontal
direction and 100 quadrilateral elements in the vertical direction, for a total of 1111
nodes. Nodes are located according to the following scheme, where x is the horizontal
coordinate and y is the vertical coordinate:

xij = αx∆x (i − 1) (10.1)

yij = αy

(
∆y (j − 1) + ∆x(11 − i) sin

(
π(j − i)

100

))
(10.2)

with i = 1, 2, . . . 11 and j = 1, 2, . . . 101, ∆x = ∆y = 0.01, and αx and αy are scaling
factors. Triangular meshes were generated by splitting each quadrilateral into two
triangles. The three proposed variants are the following:

1. The 1:1 aspect ratio test (i.e., αx = 1 and αy = 1) on the rectangular domain
[0, 1] × [0, 0.1] is the standard Saltzmann test.

2. The 1:2 aspect ratio test (i.e., αx = 0.5 and αy = 1) on the domain [0, 1] ×
[0, 0.05], was orignally proposed by Campbell and Shaskov [7], to evaluate the
performance of hydrocodes when anisotropies are present in the mesh.

3. The 100:1 aspect ratio test (i.e., αx = 100 and αy = 1) on the domain [0, 1] ×
[0, 10] was originally proposed by Margolin [37], to evaluate how very high aspect
ratio elements would affect the accuracy of hydrocode simulations.

For each of the three variants, a standard quadrilateral grid (mesh (I) in Fig. 10.3)
and two triangular grids (mesh (II) and (III) in the same figure) were adopted. It is
important to realize that although generated by splitting each of the quadrilaterals of
mesh (I) into two triangles, mesh (II) and (III) are very different in quality. In fact,
none of the triangular elements of mesh (II) is obtuse while all of the triangles of
mesh (III) are. Therefore, the quality of mesh (III) is significantly poorer than mesh
(II), although the location of the nodes is the same. In particular, an automatic mesh
generator would most likely connect nodes according to mesh (II) rather than mesh
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Figure 10.3. Initial mesh for the Saltzmann 1:1 test.
Left: Quadrilaterals (mesh (I)). Center: Triangles (mesh
(II)). Right: Triangles (mesh (III)). The 1:2 and 100:1 meshes
are obtained by appropriate scaling along the horizontal axis.
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Figure 10.4. 1:1 Saltzmann solution at T = 0.7. Left:
Quadrilaterals (mesh (I)). Center: Triangles (mesh (II)).
Right: Triangles (mesh (III)).

(III), since it usually incorporates tools to assess the quality of elements. Notice also
that the 1:2 variant exacerbates the difference between the meshes, while the 100:1
tends to level it.

All simulations were performed at CFL = 0.75.

Figures 10.4, 10.5, and 10.6 show the post-processed density solutions for the 1:1,
1:2, and 100:1 test, respectively, at time T = 0.7, shortly before the shock generated
by the piston reflects off the upper boundary. In all three tests, the density profiles for
mesh (I) and (II) look smooth and the grids do not present strong distortions, with
the exception of the region near the piston, where some under-heating (an overshoot
of the density corresponding to an undershoot in energy) is taking place. The density
solution and grid deformation are smooth only in the 1:1 and 100:1 tests for mesh
(III). Mesh (III) undergoes intense distortion in the 1:2 test. A simple explanation is
that mesh (III) is intrinsically much poorer than mesh (II), as previously mentioned.
It is quite surprising, however, that the degradation of the performance of the method
in the case of mesh (III) is only significant in the 1:2 case.
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Figure 10.5. 1:2 Saltzmann solution at T = 0.7. Left:
Quadrilaterals (mesh (I)). Center: Triangles (mesh (II)).
Right: Triangles (mesh (III)).

Quantitative results are shown in Figures 10.7, 10.8, and 10.9. For the 1:1 and 1:2
tests (Fig’s. 10.7 and 10.8, resp.), the under-heating is more pronounced, and lack
of perfect planar symmetry is observable in the normalized plot for the horizontal
velocity component v1, which is instead much smaller in the 100:1 test. Overall, for
all three variants there is good agreement with state-of-the-art computations [8, 7].
As mentioned before, results for mesh (III) are clearly the poorest in the 1:2 case,
while for the 1:1 and 1:100 tests, although inferior, they compare well with meshes
(I) and (II).

Remark 22 It is important to notice that the simulations on triangles are essentially
of the same accuracy as the simulations on quadrilaterals, whenever the quality of the
meshes is comparable.

Remark 23 The 100:1 test does not pose any problematic issue for the current al-
gorithm, contrary to the majority of hydrocodes. In fact, the 100:1 test has the best
results compared with the 1:1 and 1:2 test.
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Figure 10.6. 100:1 Saltzmann solution at T = 0.7. Left:
Quadrilaterals (mesh (I)). Center: Triangles (mesh (II)).
Right: Triangles (mesh (III)). The horizontal axis has been
rescaled by a factor 0.01, for presentation purposes.

Remark 24 It is clearly seen on the top row of Figure 10.8 that the undershoot in
the pressure causes negative values of the pressure. Such unphysical undershoots are
limited to 0.1 − 2.0% for the triangles, and are even smaller for the quadrilaterals.
The explanation for the good performance of the code in the presence of small negative
pressures has to do with the fact that in Lagrangian coordinates, a negative pressure
does not necessarily lead to a negative density, since the density is computed using
the equation ρJ = ρ0, and no volume inversions occurred in the computations.

In principle, there is no guarantee for positivity of the pressure in the presence
of large errors in the velocities. This is an important issue and is currently under
investigation. However, the typical pathologies related to spurious negative values
for the pressures, such as lack of conservation, large errors in the shock wave arrival
times, and large errors in the plateaus of the solution past a shock, have not manifested
themselves in the many simulations we performed. More work will be devoted to at
least mitigate and ideally eliminate this problem, especially in connection to complex
equations of state, which are typically used in tabulated form.
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Figure 10.7. Saltzmann 1:1 test. Left: Quadrilaterals
(mesh (I)). Center: Triangles (mesh (II)). Right: Triangles
(mesh (III)). Along the rows from top to bottom are plotted
– as a function of the vertical coordinate y – pressure, nor-
malized horizontal velocity (v1/max(|v2|)), vertical velocity
v2, and nodal density. The exact solution is represented by
the continuous red line, the dots represent all the nodal val-
ues of the numerical solution (the x-coordinate locations are
compressed into a single plane).
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Figure 10.8. Saltzmann 1:2 test. Left: Quadrilaterals
(mesh (I)). Center: Triangles (mesh (II)). Right: Triangles
(mesh (III)). Along the rows from top to bottom are plotted
– as a function of the vertical coordinate y – pressure, nor-
malized horizontal velocity (v1/max(|v2|)), vertical velocity
v2, and nodal density. The exact solution is represented by
the continuous red line, the dots represent all the nodal val-
ues of the numerical solution (the x-coordinate locations are
compressed into a single plane).
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Figure 10.9. Saltzmann 100:1 test. Left: Quadrilaterals
(mesh (I)). Center: Triangles (mesh (II)). Right: Triangles
(mesh (III)). Along the rows from top to bottom are plotted
– as a function of the vertical coordinate y – pressure, nor-
malized horizontal velocity (v1/max(|v2|)), vertical velocity
v2, and nodal density. The exact solution is represented by
the continuous red line, the dots represent all the nodal val-
ues of the numerical solution (the x-coordinate locations are
compressed into a single plane).
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Figure 10.10. Saltzmann 1:1 test solution (density color
plot). Left: Quadrilaterals (mesh (I)) at T = 0.925. Center:
Triangles (mesh (II)) at T = 0.925. Right: Triangles (mesh
(III)) at T ≈ 0.85. The white horizontal marker indicates the
location of the shock for the exact solution. Notice that the
1:1 test on mesh (III) could not be run to the end time due
to a volume inversion.

Figure 10.11. Saltzmann 100:1 test solution (density color
plot) at T = 0.925. Left: Quadrilaterals (mesh (I)). Cen-
ter: Triangles (mesh (II)). Right: Triangles (mesh (III)). The
white horizontal marker indicates the location of the shock
for the exact solution.
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Figure 10.12. Results from [8] on the Saltzmann test.

Figure (10.10) shows the results of a long run 1:1 test. Color plots of the density
at T = 0.925, are presented for meshes (I) and (II), while the solution for mesh (III)
is shown at the earlier time T ≈ 0.85, when the simulation was arrested by a volume
inversion. The white markers in the solutions for meshes (I) and (II) indicate the
exact location of the shock generated by the piston, which has reflected twice (the first
reflection occurring at the upper boundary, the second at the lower), and is moving
upwards. It is easily seen that there is good agreement between the quadrilateral
mesh (I) and the triangular mesh (II) on the location of the shock. Figure (10.11)
shows the results of the same long run test for the 1:100 aspect ratio meshes. Color
plots of the density at T = 0.925, are now presented for all meshes, since no volume
inversions occurred during the simulations. Also in this case, the agreement on the
location of the shock for the different meshes is good. The tests shown in Figures
10.10 and 10.11 have the scope of assessing whether mild negativity in the pressures
may have very negative consequences on the conservation properties of the algorithm.
The good results obtained are reassuring from this perspective.

Overall, the quality of the presented results for the Saltzmann test and its variants
is in good agreement with state-of-the-art computations [8, 7] (see, e.g., Fig. 10.12)
for quadrilateral elements. The results over triangular meshes maintain the accuracy
of the corresponding quadrilateral meshes, as long as the quality of the initial meshes
is comparable.
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Figure 10.13. Initial configuration for mesh (a), 3,160
triangular elements, 1,601 nodes.

10.3 Two-dimensional Noh test on cartesian grids

10.3.1 Triangular meshes on the unit circle

The Noh [39] test in two dimensions is an implosion test. A cartesian reference frame
is used. A number of variants of the test will be considered, to thoroughly evaluate
the performance of the SUPG approach. Let us start with three tests on triangular
meshes.

The first mesh – indicated as mesh (a) – is obtained by splitting in half (with
a directional bias) an underlying 40 × 39 uniformly-spaced quadrilateral mesh. The
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Figure 10.14. Initial configuration for mesh (b), 3,052
triangular elements, 1,541 nodes.

result (Fig. 10.13) is a 3, 160-element mesh with 1, 601 nodes. A second mesh – indi-
cated as mesh (b) – was generated by splitting into four triangles each quadrilateral
of a 28 × 27 uniformly-spaced element mesh. The result is a 3, 052-element mesh
with 1, 541 nodes (Fig. 10.14). Mesh (a) and (b) have approximately the same num-
ber of nodes and elements, while maintaining different connectivity and geometric
characteristics. Finally, mesh (c) is given by a four-fold splitting of an underlying
uniformly-spaced quadrilateral mesh of 56 × 55 elements, yielding a 12, 376-element
mesh with 6, 217 nodes. Mesh (c) can be considered as a finer-grained version of mesh
(b), and will not be shown for the sake of brevity. Meshes (a) and (b) were originally
proposed by Loubère [33], and are characterized by having elements of poor aspect
ratio and quality near the origin.
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Figure 10.15. Zoom of the initial grid near the origin (left)
and of the initial velocity (right). Top: Mesh (a). Center:
Mesh (b). Bottom: Mesh (c), 12,376 triangular elements,
6,217 nodes.
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The simulations for this first set of three meshes were performed at CFL = 0.8.
The velocity has an initial uniform radial distribution (all nodal velocity vectors are
converging to the origin, and have unit magnitude except the one centered at the
origin, which is zero), as shown in Figure 10.15. The initial energy should be zero,
but for practical purposes we used the value 10−14. The exact solution for the density
behind the shock is 16 and decays as 1+ t/r in front of the shock, where t is time and
r =

√
x2 + y2 is the radius. The final time is 0.6, for which the shock, traveling at a

velocity 1/3, is found at r = 0.2. The numerical results are presented in terms of the
final grid configuration and density color plot in Figure 10.16 for mesh (a), Figure
10.17 for mesh (b) and Figure 10.18 for mesh (c). Density elevation plots on the same
scale are compared in Figure 10.19. A quantitative comparison is presented in Figure
10.20. Considering the coarseness of meshes (a) and (b), the solutions in terms of
pressure, radial velocity and nodal density are satisfactory. Some wall effect is visible
near the origin. It is more pronounced in mesh (b) than in mesh (a). For meshes (a)
and (b), cylindrical symmetry is reasonably well preserved, in the sense that points at
the same radial location but different angular locations maintain such property in the
final stage of the simulation (these points overlap in the radial plots of Fig. 10.20).
It is important also to realize that the solution for mesh (a) is somewhat inferior, due
to a slight rotation of the grid (see the normalized tangential velocity plot). Meshes
(a) and (b), although possessing a different geometry, perform almost equivalently
in terms of pressure, radial velocity and density. There is very good reliability with
respect to changes in mesh topology.

Mesh (c) provides a more accurate solution than meshes (a) and (b): The shock
front is sharper and the plateaus of the pressure and density are closer to the exact
value. However, very close to the origin, the wall effect is somewhat more intense
in amplitude. The reader should notice that convergence is not at risk, since the
extent of the region where wall effects are present is actually smaller than in meshes
(a) or (b), so that in an L2- or L1-sense, the numerical solution is converging to
the exact solution. The intensity of the wall effect tends also to break symmetry in
that region, a fact that can be explained as follows: Because of the grid-generation
strategy for cases (b) and (c), the elements at the origin deteriorate in quality (in
terms of skewness and aspect ratio) as the meshes get finer. Mesh (c) is finer than
mesh (b), but of poorer quality in a neighborhood of the origin. This may explain
the occurrence larger errors, which eventually affect symmetry.
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Figure 10.16. Noh test on mesh (a): Final grid (above)
and density color plot (below).
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Figure 10.17. Noh test on mesh (b): Final grid (above)
and density color plot (below).
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Figure 10.18. Noh test on mesh (c): Final grid (above)
and density color plot (below).
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Figure 10.19. Noh test on a quadrant: Density elevation
plots. Top: Mesh (a). Center: Mesh (b). Bottom: Mesh (c).
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Figure 10.20. Noh test performance comparison. Left:
Mesh (a). Center: Mesh (b). Right: Mesh (c). Along the
rows from top to bottom are plotted – as a function of the ra-
dius r =

√
x2 + y2 – pressure, radial velocity vr, normalized

tangential velocity (vt/max(|vr|)), and nodal density, respec-
tively. The exact solution is represented by the continuous
line, the dots represent the nodal values of the numerical
solution. All plots contain information from each angularly-
displaced radial line.
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10.3.2 Orthogonal grids on the unit quadrant

The next variants are even more demanding, since they are performed on meshes that
do not posses cylindrical symmetry. We considered three meshing strategies for a Noh
test on the quadrant [0, 1]× [0, 1]: a mesh of 50×50 square Q1 elements, indicated as
mesh (I), and two P1 meshes obtained by splitting each of the square along one or the
other diagonal (mesh (II) and mesh (III)). A view near the origin of the initial grids
used is presented in Figure 10.21. Zero normal velocity (“roller”) boundary conditions
are imposed along the bottom and left boundaries, corresponding to the x- and y-axis.
Such boundary conditions are not exactly the same as symmetry boundary conditions
specified in [8, 7], but the results show good agreement. The simulations for this set
of meshes were performed at CFL = 0.9.

Deformed grids and density color plots are presented in Figures 10.22– 10.24.
A comparison of elevation plots for the density is presented in Figure 10.25, while
quantitative comparisons are presented in Figure 10.26. The first observation to be
made is that the mesh does not possess radial symmetry, but just an approximate
(machine precision) axis of symmetry given by the bi-secant of the quadrant (the
line from the origin at a 45o-degree angle). This symmetry can be best checked
by looking at the normalized tangential velocity plots in Figure 10.26. In order to
preserve symmetry with respect to the quadrant bisecant, the plot of the tangential
velocity must be perfectly symmetric about the horizontal axis. Although hard to see
by the unexperienced eye, symmetry is mildly broken for mesh (I). Notwithstanding
this fact, the solution in terms of pressure, radial velocity and density is quite good.
In particular, the density profile for the mesh (I) appears very smooth. The smallest
error for the density is however observed on mesh (II), while mesh (III) tends to be
noisier. There is an explanation for this fact: Element edges in mesh (II) are better
aligned with the shock front than the edges of mesh (III), which possess the worst
alignment.

Overall, the quality of the presented results for the Noh test and its variants on
both quadrilateral and triangular elements is in good agreement with state-of-the-art
computations on quadrilaterals [8, 7] (see Fig. 10.27).
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Figure 10.21. Initial meshes and velocity conditions for
the Noh test on a quadrant. Top: Mesh (I). Center: Mesh
(II). Bottom: Mesh (III).
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Figure 10.22. Noh test on a quadrant, mesh (I). Top:
Deformed grid. Bottom: Contour plot of the density.
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Figure 10.23. Noh test on a quadrant, mesh (II). Top:
Deformed grid. Bottom: Contour plot of the density.
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Figure 10.24. Noh test on a quadrant, mesh (III). Top:
Deformed grid. Bottom: Contour plot of the density.
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Figure 10.25. Noh test: Density elevation plots. Top:
Mesh (I). Center: Mesh (II). Bottom: Mesh (III).
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Figure 10.26. Noh test performance comparison. Left:
Mesh (I). Center: Mesh (II). Right: Mesh (III). Along the
rows from top to bottom are plotted – as a function of the
radius r =

√
x2 + y2 – pressure, radial velocity vr, normal-

ized tangential velocity (vt/max(|vr|)), and nodal density,
respectively. The exact solution is represented by the contin-
uous line, the dots represent the nodal values of the numerical
solution. All plots contain information from each angularly-
displaced radial line.

89



Figure 10.27. Results from [8] on the Noh test on the
quadrant. The mesh is the same as the quadrilateral mesh (I).
Above: Mesh deformation. Center: isolines for the density.
Bottom: Density radial plot.
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10.4 Sedov two-dimensional blast test

The proposed version of the Sedov blast test (an exact solution using self-similarity
arguments can be found in [42]) assesses again the ability of the method to represent
a cylindrical shock-wave pattern using a cartesian mesh.

A first set of three variants was computed on the [0, 1.1] × [0, 1.1] quadrant, with
similar topology to the meshes (I), (II), and (III) adopted for the Noh test. We will
keep the same nomenclature, indicating with mesh (I) a Q1 mesh of 45× 45 squares,
and with mesh (II) and (III), the P1 grids obtained by splitting each of the elements
of mesh (I) in half along the diagonals. The initial mesh configurations, for the sake
of brevity, are not shown, being very similar to the ones used in the Noh test.

The initial density has a uniform unit distribution, the energy is “zero” (actually
10−14) everywhere, except the first square zone on the bottom left corner of the quad-
rant, near the origin, where it takes the value 409.7. Results in terms of the deformed
grids and density contour plots are presented in Figures 10.28–10.30. Elevation plots
of the nodal density are presented in Figure 10.31. Quantitative plots are pesented in
Figure 10.32. The simulations for this set of meshes were performed at CFL = 0.9.
The quality of the results is fairly high. Notice that the shock waves possess the cor-
rect arrival time, and the slight undershoot in the velocity for the triangular meshes.
The density plots are in good agreement with the exact solution, and mesh (II) seems
to deliver the best performance.

Additional qualitative plots for an anisotropic mesh of aspect ratio 1:2 are shown
in Figure 10.33. From the contour plot of the density, the circular profile of the shock
front is quite evident. Figure 10.34 shows results for an half-plane blast. It can be
clearly seen that symmetry is preserved.
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Figure 10.28. Sedov test on mesh (I). Top: Deformed grid.
Bottom: Density contour plot.
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Figure 10.29. Sedov test on mesh (II). Top: Deformed
grid. Bottom: Density contour plot.
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Figure 10.30. Sedov test on mesh (III). Top: Deformed
grid. Bottom: Density contour plot.
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Figure 10.31. Sedov test: Density elevation plots. Top:
Mesh (I). Center: Mesh (II). Bottom: Mesh (III).
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Figure 10.32. Sedov test performance comparison. Left:
Mesh (I). Center: Mesh (II). Right: Mesh (III). Along the
rows from top to bottom are plotted – as a function of the
radius r =

√
x2 + y2 – pressure, radial velocity vr, normal-

ized tangential velocity (vt/max(|vr|)), and nodal density,
respectively. The exact solution is represented by the con-
tinuous red line, the dots represent the nodal values of the
numerical solution. All plots contain information from each
angularly-displaced radial line.
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Figure 10.33. Sedov test on 1:2 aspect ratio anisotropic
mesh. Top: Grid deformation. Bottom: Density contour
plot.
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Figure 10.34. Sedov test on the half plane, quadrialteral
mesh. Top: Grid deformation. Bottom: Density contour
plot.
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Chapter 11

Summary

A new SUPG approach to Lagrangian hydrodynamics has been proposed and de-
scribed in detail. The main features of the method are:

1. A very natural representation of the gradients of thermodynamic variables, with
very positive consequences in all test cases in which geometrical symmetries of
the solution do not match the geometrical structure of the mesh.

2. The method addresses the issue of appropriate pressure gradient representation
from a different perspective with respect to mimetic/compatible finite difference
discretizations [8]. A compatible discretization uses the standard, cell-centered,
piece-wise constant approximation for the pressure, and develops a consistent
way of representing its gradient on the edges of the cells. The SUPG approach
developed herein adopts isoparametric elements, for which there is a natural
description of gradient operators in the interiors of the elements.

3. The formulation has been developed for the fairly large class of materials obey-
ing Mie-Grüneisen equations of state.

Numerical results have indicated that a natural representation of the pressure
gradients obtained with isoparametric finite element has very positive consequences
on the overall quality of solutions.

The method has been proven to be reliable and accurate not only for isoparametric
quadrilateral elements, but also for triangular P1 elements, and can be extended, if
needed, to higher-order elements.

Three-dimensional extensions, although more involved in their implementation,
are not foreseen to present any additional theoretical issues, and are currently under
development.
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Additional work is needed to improve the artificial viscosity operator, and to
address the issue of positivity preservation for pressure. However, the quality of the
results is already very encouraging, and demonstrates the potential of the method.

The capability of combining simplex and brick elements on the same computa-
tional mesh is under development. The goal is attain greater flexibility in mesh
generation.

Further developments are anticipated in the direction of an Arbitrary Lagrangian
Eulerian (ALE) formulation, and more complex constitutive laws. Additional research
in the case of materials with strength for structural mechanics applications is also
currently envisioned.
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Appendix A

An introduction to SUPG
stabilization

The reader familiar with classical Lagrangian hydrocode technology, but unfamiliar
with the SUPG approach, may have some difficulty in grasping the key aspects of the
formulation presented herein. It is therefore felt useful to give a brief review of the
method in the simple context of the steady scalar advection-diffusion problem in one
dimension

c∂xφ − κ∂xxφ = f , on [0, 1] (A.1)

with Dirichlet boundary conditions applied at the ends of the interval [0, 1]. Let
us consider the Galerkin formulation which makes use of piecewise linear, globally
continuous basis functions with local support, and reads

−
∫ 1

0

c∂xw
hφhdx +

∫ 1

0

κ∂xw
h∂xφ

hdx −
∫ 1

0

whfdx = 0 (A.2)

The boundary conditions are embedded in the function space representing φh and wh

is assumed to vanish on the boundary. On a uniform partition [0, 1] =
⋃nel

e=1[xe, xe+1],
the assembly of the advective first derivative integrals results in the central difference
stencil:

A+1

A
e=A

(
−
∫ xe

xe−1

∂xw
hcφhdx

)
= c ∆x

φh
A+1 − φh

A−1

2∆x
(A.3)

where A is the assembly operator [2, 18], and φh
A−1 and φh

A+1 are nodal degrees-of-

freedom of the approximate solution φh. Since the central difference scheme is prone
to node-to-node oscillations near sharp layers of the solution, a standard Galerkin
formulation is not robust in the advection-dominated case (i.e., |c| → ∞). A more
robust approach would be to use an upwind difference,

c
∂φ

∂x
≈ H(c)c

φh
A − φh

A−1

∆x
+ (1 − H(c))c

φh
A+1 − φh

A

∆x
(A.4)
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where H(c) is the Heaviside function, equal to one if c > 0 and zero otherwise. Un-
fortunately, a simple-minded incorporation of the upwinding concept into a Galerkin
formulation would lead to lack of consistency and, ultimately, lack of optimal con-
vergence rates. One of the key innovations proposed with the SUPG stabilization
method was to incorporate upwinding in a variationally consistent way, leading to
optimal convergence rates in the entire range of choices for the advection-diffusion
parameters c and κ.

The starting point of the SUPG method is the observation that an upwind dis-
cretization can be obtained by perturbing the central difference stencil using an ap-
propriate numerical viscosity:

H(c)c
φh

A − φh
A−1

∆x
+ (1 − H(c))c

φh
A+1 − φh

A

∆x

= c
φh

A+1 − φh
A−1

2∆x
+

|c|∆x

2

φh
A+1 − 2φh

A + φh
A−1

∆x2
(A.5)

A variationally consistent way of recovering (A.5) is given by the SUPG method:

−
∫ 1

0

c∂xw
hφhdx +

∫ 1

0

κ∂xw
h∂xφ

hdx −
∫ 1

0

fwhdx

−
nel∑

e=1

∫ xe

xe−1

L∗
advw

hτRes(φh)dx = 0 (A.6)

where L∗
adv = −c∂x is the adjoint of the advective part of the differential operator,

and Res(φh) = c∂xφ
h + κ∂xxφ

h − f is the strong residual. The scalar parameter τ is
a function of the element Péclet number Peh = c∆x/(2κ), and yields a nodally exact
solution for piecewise-constant f , for all values of Peh:

τ =
∆x

2|c|

(
coth Peh −

1

Peh

)
(A.7)

This result holds on a non-uniform mesh with τ defined element-wise [23].

Note that

lim
Peh→∞

(
cothPeh −

1

Peh

)
= 1 (A.8)

lim
Peh→0

(
cothPeh −

1

Peh

)
=

|c|∆x

6κ
(A.9)

In the advection-dominated case, of particular interest in Lagrangian hydrodynamics,
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the two-element assembly of the term

A+1

A
e=A

∫ xe

xe−1

−L∗
advw

hτc∂xφ
hdx =

A+1

A
e=A

∫ xe

xe−1

∆x|c|
2

∂xw
h ∂xφ

h

= ∆x
|c|∆x

2

φh
A+1 − 2φh

A + φh
A−1

∆x2
(A.10)

yields the numerical viscosity in (A.5). The full stabilization operator also includes a
term depending on the force f :

A+1

A
e=A

∫ xe

xe−1

−L∗
advw

hτfdx =
A+1

A
e=A

∫ xe

xe−1

∆x|c|
2

∂xw
h f (A.11)

Due to (A.11), the SUPG approach retains a residual-consistent structure, and is
clearly different from plain upwinding.

Remark 25 Consistency is due to the residual structure of the stabilization operator.

Remark 26 Effectively, −τL∗
advw

h is a perturbation to the test function, from which
the name Streamline-Upwind Petrov-Galerkin (SUPG) formulation derived.

Remark 27 It can be proved that the SUPG method entails optimal convergence rates
for all values of the local Péclet number Peh. In multiple dimensions it is not possible
to recover a nodally exact approximation to the solution, but optimal error estimates
still hold.

Remark 28 It is very easy to generalize the formulation to unsteady flows, when a
space-time formulation is adopted.
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Appendix B

One-dimensional stabilization [44]

In the following derivations, A0 and Ai refer only to the momentum and energy
blocks of the same matrices, since stabilization is not applied to the ODE relating
rate of displacements to velocities. The multi-dimensional definition given by Shakib,
Hughes and Johan [44], a fairly standard definition of the τ matrix, reads:

τ = A−1
0

(
C2 +

(
∂ξ0

∂t

)2

I +
∂ξi

∂Xj

∂ξi

∂Xk
ÂjÂk

)−1/2

(B.1)

where Â1 = A1A
−1
0 and ξi are the coordinates in the parent domain of each element,

and ξ0 refers to the time axis. For an ideal gas in one dimension:

∂ξi

∂Xj

∂ξi

∂Xk

ÂjÂk =

(
2

∆X

)2

Â1
2

(B.2)

Therefore:

Â1 = A1A
−1
0 =

[
0 1
γ

γ−1
p 0

] [
ρ0 0
0 J

γ−1

]−1

=

[
0 1
γ

γ−1
p 0

] [
1
ρ0

0

0 γ−1
J

]

=

[
0 γ−1

J
γ

γ−1
p
ρ0

0

]
(B.3)

Â1
2

=

[ γp
ρ0J

0

0 γp
ρ0J

]
=
(cs

J

)2

I2×2 (B.4)

with cs =
√

γp
ρ

=
√

γpJ
ρ0

. It is important to realize that the form of the SUPG

stabilization is dependent on the function spaces adopted, and in particular on the
time-integration strategy.
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B.1 Second-order time integrator

For the second-order time integrator developed here, ∂ξ0
∂t

= 2
∆t

and

τ = Â0
−1

((
2

∆t

)2

I2×2 +

(
2 cs

J ∆X

)2

I2×2

)−1/2

=
∆t/2√
1 + α2

Â0
−1

=
∆t

2
√

1 + α2

[ 1
ρ0

0

0 γ−1
J

]
(B.5)

where α = cs∆t
J∆X

is the local Courant number.
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